David Gatfield

Publications | Mémoires et thèses

La recherche avancée est accessible via Serval

Les publications peuvent être gérées en accédant à Serval via MyUnil


49 publications

2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 1999 |
Diurnal control of iron responsive element containing mRNAs through iron regulatory proteins IRP1 and IRP2 is mediated by feeding rhythms.
Nadimpalli H.P., Katsioudi G., Arpa E.S., Chikhaoui L., Arpat A.B., Liechti A., Palais G., Tessmer C., Hofmann I., Galy B. et al., 2024/05/21. Genome biology, 25 (1) p. 128. Peer-reviewed.
 
ROS-induced ribosome impairment underlies ZAKα-mediated metabolic decline in obesity and aging.
Snieckute G., Ryder L., Vind A.C., Wu Z., Arendrup F.S., Stoneley M., Chamois S., Martinez-Val A., Leleu M., Dreos R. et al., 2023/12/08. Science, 382 (6675) pp. eadf3208. Peer-reviewed.
 
Diurnal control of iron responsive element (IRE)-containing mRNAs through iron regular proteins IRP1 and IRP2 is mediated by feeding rhythms
Nadimpalli Hima Priyanka, Katsioudi Georgia, Arpa Enes S., Chikhaoui Lies, Bulak Arpat A., Liechti Angelica, Palais Gaël, Tessmer Claudia, Hofmann Ilse, Galy Bruno et al., 2023/10/23..
 
Molecular basis of translation termination at noncanonical stop codons in human mitochondria.
Saurer M., Leibundgut M., Nadimpalli H.P., Scaiola A., Schönhut T., Lee R.G., Siira S.J., Rackham O., Dreos R., Lenarčič T. et al., 2023/05/05. Science, 380 (6644) pp. 531-536. Peer-reviewed.
A conditional Smg6 mutant mouse model reveals circadian clock regulation through the nonsense-mediated mRNA decay pathway.
Katsioudi G., Dreos R., Arpa E.S., Gaspari S., Liechti A., Sato M., Gabriel C.H., Kramer A., Brown S.A., Gatfield D., 2023/01/13. Science advances, 9 (2) pp. eade2828. Peer-reviewed.
Ribosome stalling is a signal for metabolic regulation by the ribotoxic stress response.
Snieckute G., Genzor A.V., Vind A.C., Ryder L., Stoneley M., Chamois S., Dreos R., Nordgaard C., Sass F., Blasius M. et al., 2022/12/06. Cell metabolism, 34 (12) pp. 2036-2046.e8. Peer-reviewed.
Global and precise identification of functional miRNA targets in mESCs by integrative analysis.
Schaefer M., Nabih A., Spies D., Hermes V., Bodak M., Wischnewski H., Stalder P., Ngondo R.P., Liechti L.A., Sajic T. et al., 2022/09/05. EMBO reports, 23 (9) pp. e54762. Peer-reviewed.
A novel Smg6 mouse model reveals regulation of circadian period and daily CRY2 accumulation through the nonsense-mediated mRNA decay pathway
Katsioudi G., Dreos R., Arpa E.S., Gaspari S., Liechti A., Sato M., Gabriel C.H., Kramer A., Brown S.A., Gatfield D., 2022/07/03..
 
Recording of Diurnal Gene Expression in Peripheral Organs of Mice Using the RT-Biolumicorder
Katsioudi G., Osorio-Forero A., Sinturel F., Hagedorn C., Kreppel F., Schibler U., Gatfield D., 2022. pp. 217-242 dans Circadian Regulation, Springer US.
Circular RNA repertoires are associated with evolutionarily young transposable elements.
Gruhl F., Janich P., Kaessmann H., Gatfield D., 2021/09/20. eLife, 10 pp. e67991. Peer-reviewed.
Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome.
Bhatt P.R., Scaiola A., Loughran G., Leibundgut M., Kratzel A., Meurs R., Dreos R., O'Connor K.M., McMillan A., Bode J.W. et al., 2021/06/18. Science, 372 (6548) pp. 1306-1313. Peer-reviewed.
I(nsp1)ecting SARS-CoV-2-ribosome interactions.
Simeoni M., Cavinato T., Rodriguez D., Gatfield D., 2021/06/10. Communications biology, 4 (1) p. 715. Peer-reviewed.
Transcriptome and translatome co-evolution in mammals.
Wang Z.Y., Leushkin E., Liechti A., Ovchinnikova S., Mößinger K., Brüning T., Rummel C., Grützner F., Cardoso-Moreira M., Janich P. et al., 2020/12. Nature, 588 (7839) pp. 642-647. Peer-reviewed.
Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing.
Arpat A.B., Liechti A., De Matos M., Dreos R., Janich P., Gatfield D., 2020/07. Genome research, 30 (7) pp. 985-999. Peer-reviewed.
Emerging Roles of Translational Control in Circadian Timekeeping.
Castelo-Szekely V., Gatfield D., 2020/05/29. Journal of molecular biology, 432 (12) pp. 3483-3497. Peer-reviewed.
Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation.
Tuck A.C., Rankova A., Arpat A.B., Liechti L.A., Hess D., Iesmantavicius V., Castelo-Szekely V., Gatfield D., Bühler M., 2020/03/19. Molecular cell, 77 (6) pp. 1222-1236.e13. Peer-reviewed.
Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via Clock.
Castelo-Szekely V., De Matos M., Tusup M., Pascolo S., Ule J., Gatfield D., 2019/06/04. Nucleic acids research, 47 (10) pp. 5193-5209. Peer-reviewed.
 
Design of in vitro Transcribed mRNA Vectors for Research and Therapy.
Tusup M., French L.E., De Matos M., Gatfield D., Kundig T., Pascolo S., 2019/05/29. Chimia, 73 (6) pp. 391-394. Peer-reviewed.
Circadian Clocks and UPR: New Twists as the Story Unfolds.
Milev N.B., Gatfield D., 2018/01/08. Developmental cell, 44 (1) pp. 7-9. Peer-reviewed.
Translational contributions to tissue specificity in rhythmic and constitutive gene expression.
Castelo-Szekely V., Arpat A.B., Janich P., Gatfield D., 2017/06/16. Genome biology, 18 (1) p. 116. Peer-reviewed.
 
Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles.
Sinturel F., Gerber A., Mauvoisin D., Wang J., Gatfield D., Stubblefield J.J., Green C.B., Gachon F., Schibler U., 2017. Cell, 169 (4) pp. 651-663.e14. Peer-reviewed.
Guidelines for Genome-Scale Analysis of Biological Rhythms.
Hughes M.E., Abruzzi K.C., Allada R., Anafi R., Arpat A.B., Asher G., Baldi P., de Bekker C., Bell-Pedersen D., Blau J. et al., 2017. Journal of Biological Rhythms, 32 (5) pp. 380-393. Peer-reviewed.
Analyzing the temporal regulation of translation efficiency in mouse liver.
Janich P., Arpat A.B., Castelo-Szekely V., Gatfield D., 2016. Genomics Data, 8 pp. 41-44. Peer-reviewed.
Translational contributions to tissue-specificity in rhythmic and constitutive gene expression.
Castelo-Szekely V., Arpat A.B., Janich P., Gatfield D., 2016..
A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.
Mang G.M., Pradervand S., Du N.H., Arpat A.B., Preitner F., Wigger L., Gatfield D., Franken P., 2015. PLoS One, 10 (1) pp. e0116760.
Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
Janich P., Arpat A.B., Castelo-Szekely V., Lopes M., Gatfield D., 2015. Genome Research, 25 (12) pp. 1848-1859. Peer-reviewed.
MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale.
Du N.H., Arpat A.B., De Matos M., Gatfield D., 2014. Elife, 3 pp. e02510.
Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells.
Bieler J., Cannavo R., Gustafson K., Gobet C., Gatfield D., Naef F., 2014. Molecular Systems Biology, 10 (7) p. 739. Peer-reviewed.
 
CAVIN-3 regulates circadian period length and PER:CRY protein abundance and interactions.
Schneider K., Köcher T., Andersin T., Kurzchalia T., Schibler U., Gatfield D., 2012. EMBO Reports, 13 (12) pp. 1138-1144.
 
Mammalian genes are transcribed with widely different bursting kinetics.
Suter D.M., Molina N., Gatfield D., Schneider K., Schibler U., Naef F., 2011. Science, 332 (6028) pp. 472-474.
MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver.
Kojima S., Gatfield D., Esau C.C., Green C.B., 2010. PLoS One, 5 (6) pp. e11264.
 
Integration of microRNA miR-122 in hepatic circadian gene expression.
Gatfield D., Le Martelot G., Vejnar C.E., Gerlach D., Schaad O., Fleury-Olela F., Ruskeepää A.L., Oresic M., Esau C.C., Zdobnov E.M. et al., 2009. Genes and Development, 23 (11) pp. 1313-1326.
 
REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis.
Le Martelot G., Claudel T., Gatfield D., Schaad O., Kornmann B., Sasso G.L., Moschetta A., Schibler U., 2009. PLoS Biology, 7 (9) pp. e1000181.
 
Circadian glucose homeostasis requires compensatory interference between brain and liver clocks.
Gatfield D., Schibler U., 2008. Proceedings of the National Academy of Sciences of the United States of America, 105 (39) pp. 14753-14754.
 
SIRT1 regulates circadian clock gene expression through PER2 deacetylation.
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., Mostoslavsky R., Alt F.W., Schibler U., 2008. Cell, 134 (2) pp. 317-328.
 
A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay.
Behm-Ansmant I., Gatfield D., Rehwinkel J., Hilgers V., Izaurralde E., 2007. EMBO Journal, 26 (6) pp. 1591-1601.
 
Physiology. Proteasomes keep the circadian clock ticking.
Gatfield D., Schibler U., 2007. Science, 316 (5828) pp. 1135-1136.
 
Genome-wide oscillation of transcription in yeast.
Reinke H., Gatfield D., 2006. Trends in Biochemical Sciences, 31 (4) pp. 189-191.
 
A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing.
Rehwinkel J., Behm-Ansmant I., Gatfield D., Izaurralde E., 2005. RNA, 11 (11) pp. 1640-1647.
 
An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay.
Palacios I.M., Gatfield D., St Johnston D., Izaurralde E., 2004. Nature, 427 (6976) pp. 753-757.
 
Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila.
Gatfield D., Izaurralde E., 2004. Nature, 429 (6991) pp. 575-578.
 
A novel mode of RBD-protein recognition in the Y14-Mago complex.
Fribourg S., Gatfield D., Izaurralde E., Conti E., 2003. Nature Structural Biology, 10 (6) pp. 433-439.
 
Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways.
Gatfield D., Unterholzner L., Ciccarelli F.D., Bork P., Izaurralde E., 2003. EMBO Journal, 22 (15) pp. 3960-3970.
 
REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export.
Gatfield D., Izaurralde E., 2002. Journal of Cell Biology, 159 (4) pp. 579-588.
 
REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus.
Rodrigues J.P., Rode M., Gatfield D., Blencowe B.J., Carmo-Fonseca M., Izaurralde E., 2001. Proceedings of the National Academy of Sciences of the United States of America, 98 (3) pp. 1030-1035.
 
The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila.
Gatfield D., Le Hir H., Schmitt C., Braun I.C., Köcher T., Wilm M., Izaurralde E., 2001. Current Biology, 11 (21) pp. 1716-1721. Peer-reviewed.
 
The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay.
Le Hir H., Gatfield D., Izaurralde E., Moore M.J., 2001. EMBO Journal, 20 (17) pp. 4987-4997.
 
The protein Mago provides a link between splicing and mRNA localization.
Le Hir H., Gatfield D., Braun I.C., Forler D., Izaurralde E., 2001. EMBO Reports, 2 (12) pp. 1119-1124.
 
Partial purification and characterization of acetyl coenzyme A: taxa-4(20),11(12)-dien-5alpha-ol O-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis.
Walker K., Ketchum R.E., Hezari M., Gatfield D., Goleniowski M., Barthol A., Croteau R., 1999. Archives of Biochemistry and Biophysics, 364 (2) pp. 273-279.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Swiss University