Julia Santiago Cuellar

Publications | Mémoires et thèses

La recherche avancée est accessible via Serval

Les publications peuvent être gérées en accédant à Serval via MyUnil


38 publications

2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2009 | 2008 |
CEP signaling coordinates plant immunity with nitrogen status.
Rzemieniewski J., Leicher H., Lee H.K., Broyart C., Nayem S., Wiese C., Maroschek J., Camgöz Z., Olsson Lalun V., Djordjevic M.A. et al., 2024/12/16. Nature communications, 15 (1) p. 10686. Peer-reviewed.
Leveraging coevolutionary insights and AI-based structural modeling to unravel receptor-peptide ligand-binding mechanisms.
Snoeck S., Lee H.K., Schmid M.W., Bender K.W., Neeracher M.J., Fernández-Fernández A.D., Santiago J., Zipfel C., 2024/08/13. Proceedings of the National Academy of Sciences of the United States of America, 121 (33) pp. e2400862121. Peer-reviewed.
 
Author Correction: Rapid alkalinization factor 22 has a structural and signalling role in root hair cell wall assembly.
Schoenaers S., Lee H.K., Gonneau M., Faucher E., Levasseur T., Akary E., Claeijs N., Moussu S., Broyart C., Balcerowicz D. et al., 2024/08. Nature plants, 10 (8) p. 1267. Peer-reviewed.
A CYBDOM protein impacts iron homeostasis and primary root growth under phosphate deficiency in Arabidopsis.
Clúa J., Montpetit J., Jimenez-Sandoval P., Naumann C., Santiago J., Poirier Y., 2024/01/11. Nature communications, 15 (1) p. 423. Peer-reviewed.
 
Microscale Thermophoresis (MST) to Study Rapid Alkalinization Factor (RALF)-Receptor Interactions
Gonneau Martine, Schoenaers Sébastjen, Broyart Caroline, Vissenberg Kris, Santiago Julia, Höfte Herman, 2024. pp. 279-293 dans Plant Peptide Hormones and Growth Factors , Springer US.
Structural insights of cell wall integrity signaling during development and immunity.
Lee H.K., Santiago J., 2023/12. Current opinion in plant biology, 76 p. 102455. Peer-reviewed.
 
Plant cell wall patterning and expansion mediated by protein-peptide-polysaccharide interaction.
Moussu S., Lee H.K., Haas K.T., Broyart C., Rathgeb U., De Bellis D., Levasseur T., Schoenaers S., Fernandez G.S., Grossniklaus U. et al., 2023/11/10. Science, 382 (6671) pp. 719-725. Peer-reviewed.
The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense.
Huerta A.I., Sancho-Andrés G., Montesinos J.C., Silva-Navas J., Bassard S., Pau-Roblot C., Kesten C., Schlechter R., Dora S., Ayupov T. et al., 2023/05/01. Molecular plant, 16 (5) pp. 865-881. Peer-reviewed.
Ricca's factors as mobile proteinaceous effectors of electrical signaling.
Gao Y.Q., Jimenez-Sandoval P., Tiwari S., Stolz S., Wang J., Glauser G., Santiago J., Farmer E.E., 2023/03/30. Cell, 186 (7) pp. 1337-1351.e20. Peer-reviewed.
Arabidopsis immune responses triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a group of leucine-rich repeat malectin receptor kinases.
Martín-Dacal M., Fernández-Calvo P., Jiménez-Sandoval P., López G., Garrido-Arandía M., Rebaque D., Del Hierro I., Berlanga D.J., Torres M.Á., Kumar V. et al., 2023/02. The Plant journal, 113 (4) pp. 833-850. Peer-reviewed.
Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3.
Rhodes J., Roman A.O., Bjornson M., Brandt B., Derbyshire P., Wyler M., Schmid M.W., Menke FLH, Santiago J., Zipfel C., 2022/05/26. eLife, 11 pp. e74687. Peer-reviewed.
 
HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides.
Roman A.O., Jimenez-Sandoval P., Augustin S., Broyart C., Hothorn L.A., Santiago J., 2022/02/15. Nature communications, 13 (1) p. 876. Peer-reviewed.
Computational prediction method to decipher receptor-glycoligand interactions in plant immunity.
Del Hierro I., Mélida H., Broyart C., Santiago J., Molina A., 2021/03. The Plant journal, 105 (6) pp. 1710-1726. Peer-reviewed.
Arabidopsis natural variation in insect egg-induced cell death reveals a role for LECTIN RECEPTOR KINASE-I.1.
Groux R., Stahl E., Gouhier-Darimont C., Kerdaffrec E., Jimenez-Sandoval P., Santiago J., Reymond P., 2021/02/25. Plant physiology, 185 (1) pp. 240-255. Peer-reviewed.
Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2.
Rhodes J., Yang H., Moussu S., Boutrot F., Santiago J., Zipfel C., 2021/01/29. Nature communications, 12 (1) p. 705. Peer-reviewed.
 
In Vitro Analytical Approaches to Study Plant Ligand-Receptor Interactions.
Sandoval P.J., Santiago J., 2020/04. Plant physiology, 182 (4) pp. 1697-1712. Peer-reviewed.
Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth
Moussu Steven, Broyart Caroline, Santos-Fernandez Gorka, Augustin Sebastian, Wehrle Sarah, Grossniklaus Ueli, Santiago Julia, 2020/03/12. Proceedings of the National Academy of Sciences p. 202000100.
 
Structural biology of cell surface receptor-ligand interactions.
Moussu S., Santiago J., 2019/12. Current opinion in plant biology, 52 pp. 38-45. Peer-reviewed.
Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction.
Moussu S., Augustin S., Roman A.O., Broyart C., Santiago J., 2018/07/01. Acta crystallographica. Section D, Structural biology, 74 (Pt 7) pp. 671-680. Peer-reviewed.
 
Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2α phosphorylation.
Faus I., Niñoles R., Kesari V., Llabata P., Tam E., Nebauer S.G., Santiago J., Hauser M.T., Gadea J., 2018. Journal of plant physiology, 224-225 pp. 173-182. Peer-reviewed.
Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors.
Hohmann U., Santiago J., Nicolet J., Olsson V., Spiga F.M., Hothorn L.A., Butenko M.A., Hothorn M., 2018. Proceedings of the National Academy of Sciences of the United States of America, 115 (13) pp. 3488-3493. Peer-reviewed.
 
How Do Plants Know when to Let Go?
Augustin S., Santiago J., 2017. Chimia, 71 (5) p. 310. Peer-reviewed.
Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature.
Hazak O., Brandt B., Cattaneo P., Santiago J., Rodriguez-Villalon A., Hothorn M., Hardtke C.S., 2017. EMBO Reports, 18 (8) pp. 1367-1381. Peer-reviewed.
 
Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission.
Santiago J., Brandt B., Wildhagen M., Hohmann U., Hothorn L.A., Butenko M.A., Hothorn M., 2016/04/08. eLife, 5. Peer-reviewed.
 
Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis.
Faus I., Zabalza A., Santiago J., Nebauer S.G., Royuela M., Serrano R., Gadea J., 2015/01/21. BMC plant biology, 15 p. 14. Peer-reviewed.
 
Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation.
Bojar D., Martinez J., Santiago J., Rybin V., Bayliss R., Hothorn M., 2014/04. The Plant journal, 78 (1) pp. 31-43. Peer-reviewed.
 
Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases.
Santiago J., Henzler C., Hothorn M., 2013/08/23. Science, 341 (6148) pp. 889-892. Peer-reviewed.
 
Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs.
Santiago J., Dupeux F., Betz K., Antoni R., Gonzalez-Guzman M., Rodriguez L., Márquez J.A., Rodriguez P.L., 2012/01. Plant science, 182 pp. 3-11. Peer-reviewed.
 
A thermodynamic switch modulates abscisic acid receptor sensitivity.
Dupeux F., Santiago J., Betz K., Twycross J., Park S.Y., Rodriguez L., Gonzalez-Guzman M., Jensen M.R., Krasnogor N., Blackledge M. et al., 2011/08/16. The EMBO journal, 30 (20) pp. 4171-4184. Peer-reviewed.
 
Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele.
Dupeux F., Antoni R., Betz K., Santiago J., Gonzalez-Guzman M., Rodriguez L., Rubio S., Park S.Y., Cutler S.R., Rodriguez P.L. et al., 2011/05. Plant physiology, 156 (1) pp. 106-116. Peer-reviewed.
 
The abscisic acid receptor PYR1 in complex with abscisic acid.
Santiago J., Dupeux F., Round A., Antoni R., Park S.Y., Jamin M., Cutler S.R., Rodriguez P.L., Márquez J.A., 2009/12/03. Nature, 462 (7273) pp. 665-668. Peer-reviewed.
 
Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs.
Santiago J., Rodrigues A., Saez A., Rubio S., Antoni R., Dupeux F., Park S.Y., Márquez J.A., Cutler S.R., Rodriguez P.L., 2009/11. The Plant journal, 60 (4) pp. 575-588. Peer-reviewed.
 
Shared and novel molecular responses of mandarin to drought.
Gimeno J., Gadea J., Forment J., Pérez-Valle J., Santiago J., Martínez-Godoy M.A., Yenush L., Bellés J.M., Brumós J., Colmenero-Flores J.M. et al., 2009/07. Plant molecular biology, 70 (4) pp. 403-420. Peer-reviewed.
 
Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid.
Rubio S., Rodrigues A., Saez A., Dizon M.B., Galle A., Kim T.H., Santiago J., Flexas J., Schroeder J.I., Rodriguez P.L., 2009/07. Plant physiology, 150 (3) pp. 1345-1355. Peer-reviewed.
 
Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.
Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F. et al., 2009/05/22. Science, 324 (5930) pp. 1068-1071. Peer-reviewed.
The short-rooted phenotype of the brevis radix mutant partly reflects root abscisic acid hypersensitivity.
Rodrigues A., Santiago J., Rubio S., Saez A., Osmont K.S., Gadea J., Hardtke C.S., Rodriguez P.L., 2009. Plant physiology, 149 (4) pp. 1917-1928. Peer-reviewed.
 
HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis.
Saez A., Rodrigues A., Santiago J., Rubio S., Rodriguez P.L., 2008/11. The Plant cell, 20 (11) pp. 2972-2988. Peer-reviewed.
 
A genome-wide 20 K citrus microarray for gene expression analysis.
Martinez-Godoy M.A., Mauri N., Juarez J., Marques M.C., Santiago J., Forment J., Gadea J., 2008/07/03. BMC genomics, 9 p. 318. Peer-reviewed.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Swiss University