Marlen Knobloch

Publications | Mémoires et thèses

La recherche avancée est accessible via Serval

Les publications peuvent être gérées en accédant à Serval via MyUnil


33 publications

2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2002 |
A fluorescent perilipin 2 knock-in mouse model reveals a high abundance of lipid droplets in the developing and adult brain.
Madsen S., Delgado A.C., Cadilhac C., Maillard V., Battiston F., Igelbüscher C.M., De Neck S., Magrinelli E., Jabaudon D., Telley L. et al., 2024/06/28. Nature communications, 15 (1) p. 5489. Peer-reviewed.
Neural stem cell metabolism revisited: a critical role for mitochondria.
Scandella V., Petrelli F., Moore D.L., Braun SMG, Knobloch M., 2023/08. Trends in endocrinology and metabolism, 34 (8) pp. 446-461. Peer-reviewed.
Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells.
Petrelli F., Scandella V., Montessuit S., Zamboni N., Martinou J.C., Knobloch M., 2023/03. Science advances, 9 (9) pp. eadd5220. Peer-reviewed.
A fluorescent perilipin 2 knock-in mouse model visualizes lipid droplets in the developing and adult brain
Sofia Madsen, Ana C. Delgado, Christelle Cadilhac, Fabrice Battison, Vanille Maillard, Elia Magrinelli, Denis Jabaudon, Ludovic Telley, Fiona Doetsch, Marlen Knobloch, 2022/06/21..
Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells
Francesco Petrelli, Valentina Scandella, Sylvie Montessuit, Nicola Zamboni, Jean-Claude Martinou, Marlen Knobloch, 2022/05/31..
Brain lipid metabolism: the emerging role of lipid droplets in glial cells.
Petrelli F., Knobloch M., Amati F., 2022/02/01. Current opinion in lipidology, 33 (1) pp. 86-87. Peer-reviewed.
Lipid droplet availability affects neural stem/progenitor cell metabolism and proliferation.
Ramosaj M., Madsen S., Maillard V., Scandella V., Sudria-Lopez D., Yuizumi N., Telley L., Knobloch M., 2021/12/21. Nature communications, 12 (1) p. 7362. Peer-reviewed.
Lipid metabolism in focus: how the build-up and breakdown of lipids affects stem cells.
Madsen S., Ramosaj M., Knobloch M., 2021/05/15. Development, 148 (10) pp. dev191924. Peer-reviewed.
Myeloid Metabolism as a New Target for Rejuvenation?-Comments on Restoring Metabolism of Myeloid Cells Reverses Cognitive Decline in Ageing. Nature. 2021 Feb;590(7844):122-128.
Knobloch M., Paolicelli R.C., 2021. Immunometabolism, 3 (4) pp. e210034. Peer-reviewed.
A Single Metabolite which Modulates Lipid Metabolism Alters Hematopoietic Stem/Progenitor Cell Behavior and Promotes Lymphoid Reconstitution.
Giger S., Kovtonyuk L.V., Utz S.G., Ramosaj M., Kovacs W.J., Schmid E., Ioannidis V., Greter M., Manz M.G., Lutolf M.P. et al., 2020/09/08. Stem Cell Reports, 3 (15) pp. 566-576. Peer-reviewed.
A novel protocol to detect green fluorescent protein in unfixed, snap-frozen tissue.
Scandella V., Paolicelli R.C., Knobloch M., 2020/09/04. Scientific Reports, 10 (1) p. 14642. Peer-reviewed.
 
Sensing the Environment: Extracellular Lactate Levels Control Adult Neurogenesis.
Scandella V., Knobloch M., 2019/12/05. Cell Stem Cell, 25 (6) pp. 729-731.
A SY-Stematic approach towards understanding stem cell biology.
Pilz G.A., Knobloch M., 2019/06/21. Development, 146 (13) pp. dev177220. Peer-reviewed.
 
Burning fat to keep your stem cells? The role of fatty acid oxidation in various tissue stem cells.
Knobloch M., Widmann C., 2018/10. Current opinion in lipidology, 29 (5) pp. 426-427. Peer-reviewed.
 
The role of fatty acid β-oxidation in lymphangiogenesis.
Wong B.W., Wang X., Zecchin A., Thienpont B., Cornelissen I., Kalucka J., García-Caballero M., Missiaen R., Huang H., Brüning U. et al., 2017/02/02. Nature, 542 (7639) pp. 49-54. Peer-reviewed.
 
Metabolism and neurogenesis.
Knobloch M., Jessberger S., 2017/02. Current opinion in neurobiology, 42 pp. 45-52. Peer-reviewed.
A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity.
Knobloch M., Pilz G.A., Ghesquière B., Kovacs W.J., Wegleiter T., Moore D.L., Hruzova M., Zamboni N., Carmeliet P., Jessberger S., 2017. Cell Reports, 20 (9) pp. 2144-2155. Peer-reviewed.
The Role of Lipid Metabolism for Neural Stem Cell Regulation
Knobloch M., 2017. Brain Plasticity, 3 (1) pp. 61-71. Peer-reviewed.
 
Metabolic control of adult neural stem cell behavior
Knobloch Marlen, Jessberger Sebastian, 2015/04. Frontiers in Biology, 10 (2) pp. 100-106.
SPOT14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators.
Knobloch M., von Schoultz C., Zurkirchen L., Braun S.M., Vidmar M., Jessberger S., 2014/11/11. Stem cell reports, 3 (5) pp. 735-742. Peer-reviewed.
Predicting stem cell fate changes by differential cell cycle progression patterns.
Roccio M., Schmitter D., Knobloch M., Okawa Y., Sage D., Lutolf M.P., 2013/01/15. Development, 140 (2) pp. 459-470. Peer-reviewed.
 
Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis.
Knobloch M., Braun S.M., Zurkirchen L., von Schoultz C., Zamboni N., Araúzo-Bravo M.J., Kovacs W.J., Karalay O., Suter U., Machado R.A. et al., 2013/01/10. Nature, 493 (7431) pp. 226-230. Peer-reviewed.
Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis.
Bracko O., Singer T., Aigner S., Knobloch M., Winner B., Ray J., Clemenson G.D., Suh H., Couillard-Despres S., Aigner L. et al., 2012/03/07. The Journal of neuroscience, 32 (10) pp. 3376-3387. Peer-reviewed.
Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis.
Karalay O., Doberauer K., Vadodaria K.C., Knobloch M., Berti L., Miquelajauregui A., Schwark M., Jagasia R., Taketo M.M., Tarabykin V. et al., 2011/04/05. Proceedings of the National Academy of Sciences of the United States of America, 108 (14) pp. 5807-5812. Peer-reviewed.
 
Perspectives on adult neurogenesis.
Knobloch M., Jessberger S., 2011/03. The European journal of neuroscience, 33 (6) pp. 1013-1017. Peer-reviewed.
 
Vascular response to acetazolamide decreases as a function of age in the arcA beta mouse model of cerebral amyloidosis.
Princz-Kranz F.L., Mueggler T., Knobloch M., Nitsch R.M., Rudin M., 2010/10. Neurobiology of disease, 40 (1) pp. 284-292. Peer-reviewed.
 
RAGE does not affect amyloid pathology in transgenic ArcAbeta mice.
Vodopivec I., Galichet A., Knobloch M., Bierhaus A., Heizmann C.W., Nitsch R.M., 2009. Neuro-degenerative diseases, 6 (5-6) pp. 270-280. Peer-reviewed.
 
Dendritic spine loss and synaptic alterations in Alzheimer's disease.
Knobloch M., Mansuy I.M., 2008/02. Molecular neurobiology, 37 (1) pp. 73-82. Peer-reviewed.
 
Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology.
Berson A., Knobloch M., Hanan M., Diamant S., Sharoni M., Schuppli D., Geyer B.C., Ravid R., Mor T.S., Nitsch R.M. et al., 2008/01. Brain, 131 (Pt 1) pp. 109-119. Peer-reviewed.
 
Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice.
Knobloch M., Konietzko U., Krebs D.C., Nitsch R.M., 2007/09. Neurobiology of aging, 28 (9) pp. 1297-1306. Peer-reviewed.
Abeta oligomer-mediated long-term potentiation impairment involves protein phosphatase 1-dependent mechanisms.
Knobloch M., Farinelli M., Konietzko U., Nitsch R.M., Mansuy I.M., 2007/07/18. The Journal of neuroscience, 27 (29) pp. 7648-7653. Peer-reviewed.
 
Increased Abeta production leads to intracellular accumulation of Abeta in flotillin-1-positive endosomes.
Rajendran L., Knobloch M., Geiger K.D., Dienel S., Nitsch R., Simons K., Konietzko U., 2007. Neuro-degenerative diseases, 4 (2-3) pp. 164-170. Peer-reviewed.
 
Protein phosphatase 1 is a molecular constraint on learning and memory.
Genoux D., Haditsch U., Knobloch M., Michalon A., Storm D., Mansuy I.M., 2002/08/29. Nature, 418 (6901) pp. 970-975. Peer-reviewed.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Swiss University