Gian-Paolo Dotto

Publications | Mémoires et thèses

La recherche avancée est accessible via Serval

Les publications peuvent être gérées en accédant à Serval via MyUnil


151 publications

Sous presse | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 |
 
Androgen receptor signalling in non-prostatic malignancies: challenges and opportunities.
Dotto G.P., Buckinx A., Özdemir B.C., Simon C. Nature reviews. Cancer. Peer-reviewed.
Ambassadors of peace : The anthropology of war and how to overcome the human killing instinct.
Dotto G.P., 2024/09. EMBO reports, 25 (9) pp. 3753-3756. Peer-reviewed.
ANKRD1 is a mesenchymal-specific driver of cancer-associated fibroblast activation bridging androgen receptor loss to AP-1 activation.
Mazzeo L., Ghosh S., Di Cicco E., Isma J., Tavernari D., Samarkina A., Ostano P., Youssef M.K., Simon C., Dotto G.P., 2024/02/03. Nature communications, 15 (1) p. 1038. Peer-reviewed.
Androgen receptor is a determinant of melanoma targeted drug resistance.
Samarkina A., Youssef M.K., Ostano P., Ghosh S., Ma M., Tassone B., Proust T., Chiorino G., Levesque M.P., Goruppi S. et al., 2023/10/14. Nature communications, 14 (1) p. 6498. Peer-reviewed.
The ULK3 kinase is a determinant of keratinocyte self-renewal and tumorigenesis targeting the arginine methylome.
Goruppi S., Clocchiatti A., Bottoni G., Di Cicco E., Ma M., Tassone B., Neel V., Demehri S., Simon C., Paolo Dotto G., 2023/02/16. Nature communications, 14 (1) p. 887. Peer-reviewed.
 
Mesenchymal cells in health and disease.
Koliaraki V., Dotto G.P., Buckley C.D., Kollias G., 2022/10. Nature immunology, 23 (10) pp. 1395-1398. Peer-reviewed.
 
Sphingolipids control dermal fibroblast heterogeneity.
Capolupo L., Khven I., Lederer A.R., Mazzeo L., Glousker G., Ho S., Russo F., Montoya J.P., Bhandari D.R., Bowman A.P. et al., 2022/04/15. Science, 376 (6590) pp. eabh1623. Peer-reviewed.
HSD17B7 gene in self-renewal and oncogenicity of keratinocytes from Black versus White populations.
Xu X., Tassone B., Ostano P., Katarkar A., Proust T., Joseph J.M., Riganti C., Chiorino G., Kutalik Z., Lefort K. et al., 2021/07/07. EMBO molecular medicine, 13 (7) pp. e14133. Peer-reviewed.
 
Flash forward genetics: new twists in transcription across evolutionary boundaries.
Dotto G.P., Missero C., 2021/03/03. EMBO reports, 22 (3) pp. e52152. Peer-reviewed.
Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis.
Ma M., Ghosh S., Tavernari D., Katarkar A., Clocchiatti A., Mazzeo L., Samarkina A., Epiney J., Yu Y.R., Ho P.C. et al., 2021/02/01. The Journal of experimental medicine, 218 (2) pp. e20201137. Peer-reviewed.
 
Phenformin Promotes Keratinocyte Differentiation via the Calcineurin/NFAT Pathway.
Zhou Q., Kim S.H., Pérez-Lorenzo R., Liu C., Huang M., Dotto G.P., Zheng B., Wu X., 2021/01. The Journal of investigative dermatology, 141 (1) pp. 152-163. Peer-reviewed.
Visualizing cellular heterogeneity by quantifying the dynamics of MAPK activity in live mammalian cells with synthetic fluorescent biosensors.
Ma M., Bordignon P., Dotto G.P., Pelet S., 2020/12. Heliyon, 6 (12) pp. e05574. Peer-reviewed.
NOTCH1 gene amplification promotes expansion of Cancer Associated Fibroblast populations in human skin.
Katarkar A., Bottoni G., Clocchiatti A., Goruppi S., Bordignon P., Lazzaroni F., Gregnanin I., Ostano P., Neel V., Dotto G.P., 2020/10/12. Nature communications, 11 (1) p. 5126. Peer-reviewed.
 
Response by the author.
Dotto G.P., 2020/10/05. EMBO reports, 21 (10) pp. e51505. Peer-reviewed.
To be or not to be: The second law of thermodynamics and the flow of life and death.
Dotto G.P., 2020/07/03. EMBO reports, 21 (7) pp. e50861. Peer-reviewed.
Conjectures, refutations and the search for truths: Science, symbolic truths and the devil.
Dotto G.P., 2020/02/05. EMBO reports, 21 (2) pp. e49924. Peer-reviewed.
 
Gender medicine and oncology: report and consensus of an ESMO workshop.
Wagner A.D., Oertelt-Prigione S., Adjei A., Buclin T., Cristina V., Csajka C., Coukos G., Dafni U., Dotto G.P., Ducreux M. et al., 2019/12/01. Annals of oncology, 30 (12) pp. 1914-1924. Peer-reviewed.
 
CSL controls telomere maintenance and genome stability in human dermal fibroblasts.
Bottoni G., Katarkar A., Tassone B., Ghosh S., Clocchiatti A., Goruppi S., Bordignon P., Jafari P., Tordini F., Lunardi T. et al., 2019/08/29. Nature communications, 10 (1) p. 3884. Peer-reviewed.
 
Dualism of FGF and TGF-β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant.
Bordignon P., Bottoni G., Xu X., Popescu A.S., Truan Z., Guenova E., Kofler L., Jafari P., Ostano P., Röcken M. et al., 2019/08/27. Cell reports, 28 (9) pp. 2358-2372.e6. Peer-reviewed.
Sex Hormones and Anticancer Immunity.
Özdemir B.C., Dotto G.P., 2019/08/01. Clinical cancer research, 25 (15) pp. 4603-4610. Peer-reviewed.
Gender and sex-time to bridge the gap.
Dotto G.P., 2019/05. EMBO molecular medicine, 11 (5). Peer-reviewed.
 
A role for stromal autophagy in cancer-associated fibroblast activation.
Goruppi S., Clocchiatti A., Dotto G.P., 2019/04. Autophagy, 15 (4) pp. 738-739. Peer-reviewed.
 
Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation.
Clocchiatti A., Ghosh S., Procopio M.G., Mazzeo L., Bordignon P., Ostano P., Goruppi S., Bottoni G., Katarkar A., Levesque M. et al., 2018/12/03. The Journal of clinical investigation, 128 (12) pp. 5531-5548. Peer-reviewed.
Autophagy Controls CSL/RBPJκ Stability through a p62/SQSTM1-Dependent Mechanism.
Goruppi S., Jo S.H., Laszlo C., Clocchiatti A., Neel V., Dotto G.P., 2018/09/18. Cell reports, 24 (12) pp. 3108-3114.e4. Peer-reviewed.
 
Sex Differences in Efficacy and Toxicity of Systemic Treatments: An Undervalued Issue in the Era of Precision Oncology.
Özdemir B.C., Csajka C., Dotto G.P., Wagner A.D., 2018/09/10. Journal of clinical oncology, 36 (26) pp. 2680-2683. Peer-reviewed.
Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B.
Al Labban D., Jo S.H., Ostano P., Saglietti C., Bongiovanni M., Panizzon R., Dotto G.P., 2018/06/01. The Journal of clinical investigation, 128 (6) pp. 2581-2599. Peer-reviewed.
The ULK3 Kinase Is Critical for Convergent Control of Cancer-Associated Fibroblast Activation by CSL and GLI.
Goruppi S., Procopio M.G., Jo S., Clocchiatti A., Neel V., Dotto G.P., 2017/09/05. Cell reports, 20 (10) pp. 2468-2479. Peer-reviewed.
 
Racial Differences in Cancer Susceptibility and Survival: More Than the Color of the Skin?
Özdemir B.C., Dotto G.P., 2017/03. Trends in cancer, 3 (3) pp. 181-197. Peer-reviewed.
Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation.
Kim D.E., Procopio M.G., Ghosh S., Jo S.H., Goruppi S., Magliozzi F., Bordignon P., Neel V., Angelino P., Dotto G.P., 2017. The Journal of Experimental Medicine, 214 (8) pp. 2349-2368. Peer-reviewed.
CYFIP1 is directly controlled by NOTCH1 and down-regulated in cutaneous squamous cell carcinoma.
Dziunycz P.J., Neu J., Lefort K., Djerbi N., Freiberger S.N., Iotzova-Weiss G., French L.E., Dotto G.P., Hofbauer G.F., 2017. PLoS One, 12 (4) pp. e0173000. Peer-reviewed.
miR-181a decelerates proliferation in cutaneous squamous cell carcinoma by targeting the proto-oncogene KRAS.
Neu J., Dziunycz P.J., Dzung A., Lefort K., Falke M., Denzler R., Freiberger S.N., Iotzova-Weiss G., Kuzmanov A., Levesque M.P. et al., 2017. PLoS One, 12 (9) pp. e0185028. Peer-reviewed.
PDCD4 is a CSL associated protein with a transcription repressive function in cancer associated fibroblast activation.
Jo S.H., Kim D.E., Clocchiatti A., Dotto G.P., 2016/09/13. Oncotarget, 7 (37) pp. 58717-58727. Peer-reviewed.
Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.
Lefort K., Ostano P., Mello-Grand M., Calpini V., Scatolini M., Farsetti A., Dotto G.P., Chiorino G., 2016/07/26. Oncotarget, 7 (30) pp. 48011-48026. Peer-reviewed.
Squamous Cell Cancers: A Unified Perspective on Biology and Genetics.
Dotto G.P., Rustgi A.K., 2016/04/09. Cancer cell, 29 (5) pp. 622-637. Peer-reviewed.
CSL-p53: From senescence to CAF activation.
Procopio M.G., Laszlo C., Dotto G.P., 2016. Cell Cycle, 15 (4) pp. 485-486. Peer-reviewed.
Negative control of CSL gene transcription by stress/DNA damage response and p53.
Menietti E., Xu X., Ostano P., Joseph J.M., Lefort K., Dotto G.P., 2016. Cell Cycle, 15 (13) pp. 1767-1778. Peer-reviewed.
Sexual dimorphism in cancer.
Clocchiatti A., Cora E., Zhang Y., Dotto G.P., 2016. Nature Reviews. Cancer, 16 (5) pp. 330-339. Peer-reviewed.
 
Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation.
Procopio M.G., Laszlo C., Al Labban D., Kim D.E., Bordignon P., Jo S.H., Goruppi S., Menietti E., Ostano P., Ala U. et al., 2015. Nature Cell Biology, 17 (9) pp. 1193-1204. Peer-reviewed.
 
A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes.
Kurinna S., Schäfer M., Ostano P., Karouzakis E., Chiorino G., Bloch W., Bachmann A., Gay S., Garrod D., Lefort K. et al., 2014. Nature Communications, 5 p. 5099.
miR-34a/SIRT6 in squamous differentiation and cancer.
Dotto G.P., Karine L., 2014. Cell cycle, 13 (7) pp. 1055-1056. Peer-reviewed.
 
Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer.
Brooks Y.S., Ostano P., Jo S.H., Dai J., Getsios S., Dziunycz P., Hofbauer G.F., Cerveny K., Chiorino G., Lefort K. et al., 2014. Journal of Clinical Investigation, 124 (5) pp. 2260-2276.
 
Multifocal epithelial tumors and field cancerization: stroma as a primary determinant.
Dotto G.P., 2014. Journal of Clinical Investigation, 124 (4) pp. 1446-1453.
Small GTPase RhoE/Rnd3 is a critical regulator of Notch1 signaling.
Zhu Z., Todorova K., Lee K.K., Wang J., Kwon E., Kehayov I., Kim H.G., Kolev V., Dotto G.P., Lee S.W. et al., 2014. Cancer Research, 74 (7) pp. 2082-2093. Peer-reviewed.
 
The Oncogene ATF3 Is Potentiated by Cyclosporine A and Ultraviolet Light A.
Dziunycz P.J., Lefort K., Wu X., Freiberger S.N., Neu J., Djerbi N., Iotzowa-Weiss G., French L.E., Dotto G.P., Hofbauer G.F., 2014. Journal of Investigative Dermatology, 134 (7) pp. 1998-2004.
 
A miR-34a-SIRT6 axis in the squamous cell differentiation network.
Lefort K., Brooks Y., Ostano P., Cario-André M., Calpini V., Guinea-Viniegra J., Albinger-Hegyi A., Hoetzenecker W., Kolfschoten I., Wagner E.F. et al., 2013. EMBO Journal, 32 (16) pp. 2248-2263.
 
Gene profiling analysis of the early effects of ablative fractional carbon dioxide laser treatment on human skin.
Kim J.E., Won C.H., Bak H., Kositratna G., Manstein D., Dotto G.P., Chang S.E., 2013. Dermatologic Surgery, 39 (7) pp. 1033-1043. Peer-reviewed.
Mesenchymal stroma: primary determinant and therapeutic target for epithelial cancer.
Goruppi S., Dotto G.P., 2013. Trends in Cell Biology, 23 (12) pp. 593-602. Peer-reviewed.
The retinoid-related orphan receptor RORα promotes keratinocyte differentiation via FOXN1.
Dai J., Brooks Y., Lefort K., Getsios S., Dotto G.P., 2013. PLoS One, 8 (7) pp. e70392.
Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling.
Hu B., Castillo E., Harewood L., Ostano P., Reymond A., Dummer R., Raffoul W., Hoetzenecker W., Hofbauer G.F., Dotto G.P., 2012. Cell, 149 (6) pp. 1207-1220. Peer-reviewed.
p21 as a transcriptional co-repressor of S-phase and mitotic control genes.
Ferrándiz N., Caraballo J.M., García-Gutierrez L., Devgan V., Rodriguez-Paredes M., Lafita M.C., Bretones G., Quintanilla A., Muñoz-Alonso M.J., Blanco R. et al., 2012. PLoS One, 7 (5) pp. e37759.
 
p63 and FGFR: when development meets proliferation.
Dotto G.P., 2012. EMBO Molecular Medicine, 4 (3) pp. 165-167. Peer-reviewed.
 
Calcineurin signaling as a negative determinant of keratinocyte cancer stem cell potential and carcinogenesis.
Dotto G.P., 2011. Cancer Research, 71 (6) pp. 2029-2033.
 
IRF6 is a mediator of Notch pro-differentiation and tumour suppressive function in keratinocytes.
Restivo G., Nguyen B.C., Dziunycz P., Ristorcelli E., Ryan R.J., Özuysal Ö.Y., Di Piazza M., Radtke F., Dixon M.J., Hofbauer G.F. et al., 2011. EMBO Journal, 30 (22) pp. 4571-4585.
 
p63 and epithelial metaplasia: a gutsy choice.
Lefort K., Dotto G.P., 2011. Cell, 145 (7) pp. 1003-1005.
Opposing roles for calcineurin and ATF3 in squamous skin cancer.
Wu X., Nguyen B.C., Dziunycz P., Chang S., Brooks Y., Lefort K., Hofbauer G.F., Dotto G.P., 2010/05/20. Nature, 465 (7296) pp. 368-372. Peer-reviewed.
 
An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells.
Kang J., Yoo J., Lee S., Tang W., Aguilar B., Ramu S., Choi I., Otu H.H., Shin J.W., Dotto G.P. et al., 2010. Blood, 116 (1) pp. 140-150. Peer-reviewed.
 
Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis.
Hu B., Lefort K., Qiu W., Nguyen B.C., Rajaram R.D., Castillo E., He F., Chen Y., Angel P., Brisken C. et al., 2010. Genes and Development, 24 (14) pp. 1519-1532. Peer-reviewed.
 
Cooperation between the transcription factors p63 and IRF6 is essential to prevent cleft palate in mice.
Thomason H.A., Zhou H., Kouwenhoven E.N., Dotto G.P., Restivo G., Nguyen B.C., Little H., Dixon M.J., van Bokhoven H., Dixon J., 2010. Journal of Clinical Investigation, 120 (5) pp. 1561-1569. Peer-reviewed.
Differential control of Notch1 gene transcription by Klf4 and Sp3 transcription factors in normal versus cancer-derived keratinocytes.
Lambertini C., Pantano S., Dotto G.P., 2010. PLoS One, 5 (4) pp. e10369. Peer-reviewed.
 
Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in mice.
Lyubimova A., Garber J.J., Upadhyay G., Sharov A., Anastasoaie F., Yajnik V., Cotsarelis G., Dotto G.P., Botchkarev V., Snapper S.B., 2010. Journal of Clinical Investigation, 120 (2) pp. 446-456. Peer-reviewed.
 
The p63 target HBP1 is required for skin differentiation and stratification.
Borrelli S., Candi E., Hu B., Dolfini D., Ravo M., Grober O.M., Weisz A., Dotto G.P., Melino G., Viganò M.A. et al., 2010. Cell Death and Differentiation, 17 (12) pp. 1896-1907.
 
A positive FGFR3/FOXN1 feedback loop underlies benign skin keratosis versus squamous cell carcinoma formation in humans.
Mandinova A., Kolev V., Neel V., Hu B., Stonely W., Lieb J., Wu X., Colli C., Han R., Pazin M.J. et al., 2009. Journal of Clinical Investigation, 119 (10) pp. 3127-3137.
 
Crosstalk of Notch with p53 and p63 in cancer growth control.
Dotto G.P., 2009. Nature reviews. Cancer, 9 (8) pp. 587-595. Peer-reviewed.
 
Impact of normalization on miRNA microarray expression profiling.
Pradervand S., Weber J., Thomas J., Bueno M., Wirapati P., Lefort K., Dotto G.P., Harshman K., 2009. RNA, 15 (3) pp. 493-501. Peer-reviewed.
EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer.
Kolev V., Mandinova A., Guinea-Viniegra J., Hu B., Lefort K., Lambertini C., Neel V., Dummer R., Wagner E.F., Dotto G.P., 2008. Nature cell biology, 10 (8) pp. 902-911. Peer-reviewed.
Notch tumor suppressor function
Dotto G. P., 2008. Oncogene, 27 (38) pp. 5115-5123. Peer-reviewed.
 
The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response.
Mandinova A., Lefort K., Tommasi di Vignano A., Stonely W., Ostano P., Chiorino G., Iwaki H., Nakanishi J., Dotto G.P., 2008. EMBO journal, 27 (8) pp. 1243-1254.
 
Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases
Lefort K., Mandinova A., Ostano P., Kolev V., Calpini V., Kolfschoten I., Devgan V., Lieb J., Raffoul W., Hohl D. et al., 2007/03. Genes and Development, 21 (5) pp. 562-77.
 
RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress.
Ongusaha P.P., Kim H.G., Boswell S.A., Ridley A.J., Der C.J., Dotto G.P., Kim Y.B., Aaronson S.A., Lee S.W., 2006/12/19. Current biology, 16 (24) pp. 2466-2472. Peer-reviewed.
 
Bone morphogenetic protein signaling regulates the size of hair follicles and modulates the expression of cell cycle-associated genes
Sharov A. A., Sharova T. Y., Mardaryev A. N., Tommasi di Vignano A., Atoyan R., Weiner L., Yang S., Brissette J. L., Dotto G. P., Botchkarev V. A., 2006/11. Proceedings of the National Academy of Sciences of the United States of America, 103 (48) pp. 18166-71.
 
p21WAF1/Cip1 suppresses keratinocyte differentiation independently of the cell cycle through transcriptional up-regulation of the IGF-I gene.
Devgan V., Nguyen B.C., Oh H., Dotto G.P., 2006/10. Journal of Biological Chemistry, 281 (41) pp. 30463-30470. Peer-reviewed.
 
Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation
Nguyen B. C., Lefort K., Mandinova A., Antonini D., Devgan V., Della Gatta G., Koster M. I., Zhang Z., Wang J., Tommasi di Vignano A. et al., 2006/04. Genes and Development, 20 (8) pp. 1028-42.
 
Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism.
Ayyanan A., Civenni G., Ciarloni L., Morel C., Mueller N., Lefort K., Mandinova A., Raffoul W., Fiche M., Dotto G.P. et al., 2006. Proceedings of the National Academy of Sciences of the United States of America, 103 (10) pp. 3799-3804.
 
Developmental biology. Rac1 up for epidermal stem cells.
Dotto G.P., Cotsarelis G., 2005. Science, 309 (5736) pp. 890-891.
 
Glucocorticoid-induced tumor necrosis factor receptor is a p21Cip1/WAF1 transcriptional target conferring resistance of keratinocytes to UV light-induced apoptosis.
Wang J., Devgan V., Corrado M., Prabhu N.S., El-Deiry W.S., Riccardi C., Pandolfi P.P., Missero C., Dotto G.P., 2005. Journal of Biological Chemistry, 280 (45) pp. 37725-37731.
 
Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control.
Mammucari C., Tommasi di Vignano A., Sharov A.A., Neilson J., Havrda M.C., Roop D.R., Botchkarev V.A., Crabtree G.R., Dotto G.P., 2005. Developmental Cell, 8 (5) pp. 665-676.
 
Negative control of keratinocyte differentiation by Rho/CRIK signaling coupled with up-regulation of KyoT1/2 (FHL1) expression.
Grossi M., Hiou-Feige A., Tommasi Di Vignano A., Calautti E., Ostano P., Lee S., Chiorino G., Dotto G.P., 2005. Proceedings of the National Academy of Sciences of the United States of America, 102 (32) pp. 11313-11318.
 
p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation.
Devgan V., Mammucari C., Millar S.E., Brisken C., Dotto G.P., 2005. Genes and Development, 19 (12) pp. 1485-1495.
 
A dynamic model of keratinocyte stem cell renewal and differentiation: role of the p21WAF1/Cip1 and Notch1 signaling pathways.
Okuyama R., LeFort K., Dotto G.P., 2004. Journal of Investigative Dermatology Symposium Proceedings, 9 (3) pp. 248-252.
 
High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism.
Okuyama R., Nguyen B.C., Talora C., Ogawa E., Tommasi di Vignano A., Lioumi M., Chiorino G., Tagami H., Woo M., Dotto G.P., 2004. Developmental Cell, 6 (4) pp. 551-562.
 
More than cell death: caspases and caspase inhibitors on the move.
Dotto G.P., Silke J., 2004. Developmental Cell, 7 (1) pp. 2-3.
 
Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression.
Lefort K., Dotto G.P., 2004. Seminars in Cancer Biology, 14 (5) pp. 374-386.
 
Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells.
Itoh F., Itoh S., Goumans M.J., Valdimarsdottir G., Iso T., Dotto G.P., Hamamori Y., Kedes L., Kato M., ten Dijke Pt P., 2004. EMBO Journal, 23 (3) pp. 541-551.
 
Notch1 functions as a tumor suppressor in mouse skin.
Nicolas M., Wolfer A., Raj K., Kummer J.A., Mill P., van Noort M., Hui C.C., Clevers H., Dotto G.P., Radtke F., 2003. Nature Genetics, 33 (3) pp. 416-421.
 
Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis.
Liu Z.J., Shirakawa T., Li Y., Soma A., Oka M., Dotto G.P., Fairman R.M., Velazquez O.C., Herlyn M., 2003. Molecular and Cellular Biology, 23 (1) pp. 14-25.
 
'Srcasm: a novel Src activating and signaling molecule.
Seykora J.T., Mei L., Dotto G.P., Stein P.L., 2002. Journal of Biological Chemistry, 277 (4) pp. 2812-2822.
 
Fyn tyrosine kinase is a downstream mediator of Rho/PRK2 function in keratinocyte cell-cell adhesion.
Calautti E., Grossi M., Mammucari C., Aoyama Y., Pirro M., Ono Y., Li J., Dotto G.P., 2002. Journal of Cell Biology, 156 (1) pp. 137-148.
 
IGF-2 is a mediator of prolactin-induced morphogenesis in the breast.
Brisken C., Ayyannan A., Nguyen C., Heineman A., Reinhardt F., Tan J., Dey S.K., Dotto G.P., Weinberg R.A., Jan T., 2002. Developmental Cell, 3 (6) pp. 877-887.
 
Negative regulation of cell growth and differentiation by TSG101 through association with p21(Cip1/WAF1).
Oh H., Mammucari C., Nenci A., Cabodi S., Cohen S.N., Dotto G.P., 2002. Proceedings of the National Academy of Sciences of the United States of America, 99 (8) pp. 5430-5435.
 
Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation.
Talora C., Sgroi D.C., Crum C.P., Dotto G.P., 2002. Genes and Development, 16 (17) pp. 2252-2263.
 
The molecular basis of skin carcinogenesis
Missero C., D'Errico M., Dotto G.P., Dogliotti E., 2002. pp. 407-426 dans Coleman W.B., Tsongalis G.J. (eds.) The molecular basis of human cancer chap. 18, Humana Press.
 
Cross talk among calcineurin, Sp1/Sp3, and NFAT in control of p21(WAF1/CIP1) expression in keratinocyte differentiation.
Santini M.P., Talora C., Seki T., Bolgan L., Dotto G.P., 2001. Proceedings of the National Academy of Sciences of the United States of America, 98 (17) pp. 9575-9580.
 
Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation.
Rangarajan A., Talora C., Okuyama R., Nicolas M., Mammucari C., Oh H., Aster J.C., Krishna S., Metzger D., Chambon P. et al., 2001. EMBO Journal, 20 (13) pp. 3427-3436.
 
A PKC-eta/Fyn-dependent pathway leading to keratinocyte growth arrest and differentiation.
Cabodi S., Calautti E., Talora C., Kuroki T., Stein P.L., Dotto G.P., 2000. Molecular Cell, 6 (5) pp. 1121-1129.
 
Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo.
Foitzik K., Lindner G., Mueller-Roever S., Maurer M., Botchkareva N., Botchkarev V., Handjiski B., Metz M., Hibino T., Soma T. et al., 2000. FASEB Journal, 14 (5) pp. 752-760.
 
Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis.
Di Cunto F., Imarisio S., Hirsch E., Broccoli V., Bulfone A., Migheli A., Atzori C., Turco E., Triolo R., Dotto G.P. et al., 2000. Neuron, 28 (1) pp. 115-127.
 
p21(WAF1/Cip1): more than a break to the cell cycle?
Dotto G.P., 2000. Biochimica et Biophysica Acta-Reviews on Cancer, 1471 (1) pp. M43-M56. Peer-reviewed.
 
p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential.
Topley G.I., Okuyama R., Gonzales J.G., Conti C., Dotto G.P., 1999. Proceedings of the National Academy of Sciences of the United States of America, 96 (16) pp. 9089-9094.
 
Signal transduction pathways controlling the switch between keratinocyte growth and differentiation.
Dotto G.P., 1999. Critical Reviews in Oral Biology and Medicine, 10 (4) pp. 442-457.
 
TGF-beta3, but not TGF-beta1, protects keratinocytes against 12-O-tetradecanoylphorbol-13-acetate-induced cell death in vitro and in vivo.
Li J., Foitzik K., Calautti E., Baden H., Doetschman T., Dotto G.P., 1999. Journal of Biological Chemistry, 274 (7) pp. 4213-4219.
 
The TGF-beta2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis.
Foitzik K., Paus R., Doetschman T., Dotto G.P., 1999. Developmental Biology, 212 (2) pp. 278-289.
 
Citron rho-interacting kinase, a novel tissue-specific ser/thr kinase encompassing the Rho-Rac-binding protein Citron.
Di Cunto F., Calautti E., Hsiao J., Ong L., Topley G., Turco E., Dotto G.P., 1998. Journal of Biological Chemistry, 273 (45) pp. 29706-29711.
 
Differentiation-specific increase in ALA-induced protoporphyrin IX accumulation in primary mouse keratinocytes.
Ortel B., Chen N., Brissette J., Dotto G.P., Maytin E., Hasan T., 1998. British Journal of Cancer, 77 (11) pp. 1744-1751.
 
In vivo antitumor effect of retrovirus-mediated gene transfer of the adenovirus E1a gene.
Sánchez-Prieto R., Quintanilla M., Martín P., Lleonart M., Cano A., Dotto G.P., Ramón y Cajal S., 1998. Cancer Gene Therapy, 5 (4) pp. 215-224.
 
Inhibitory function of p21Cip1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control.
Di Cunto F., Topley G., Calautti E., Hsiao J., Ong L., Seth P.K., Dotto G.P., 1998. Science, 280 (5366) pp. 1069-1072.
The keratinocyte growth-differentiation switch.
Dotto P., 1998. Frontiers in Bioscience, 3 pp. d502-d508.
 
Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion.
Calautti E., Cabodi S., Stein P.L., Hatzfeld M., Kedersha N., Paolo Dotto G., 1998. Journal of Cell Biology, 141 (6) pp. 1449-1465.
 
Involvement of the Sp3 transcription factor in induction of p21Cip1/WAF1 in keratinocyte differentiation.
Prowse D.M., Bolgan L., Molnár A., Dotto G.P., 1997. Journal of Biological Chemistry, 272 (2) pp. 1308-1314.
 
Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation potential.
Kamimura J., Lee D., Baden H.P., Brissette J., Dotto G.P., 1997. Journal of Investigative Dermatology, 109 (4) pp. 534-540.
 
Growth regulatory proteins that repress differentiation markers in melanocytes also downregulate the transcription factor microphthalmia.
Halaban R., Böhm M., Dotto P., Moellmann G., Cheng E., Zhang Y., 1996. Journal of Investigative Dermatology, 106 (6) pp. 1266-1272.
 
p21(WAF1/CIP1) and terminal differentiation control of normal epithelia
Missero C., Dotto G.P., 1996. Molecular and Cellular Differentiation, 4 (1) pp. 1-16.
 
The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression.
Missero C., Di Cunto F., Kiyokawa H., Koff A., Dotto G.P., 1996. Genes and Development, 10 (23) pp. 3065-3075.
 
The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation.
Brissette J.L., Li J., Kamimura J., Lee D., Dotto G.P., 1996. Genes and Development, 10 (17) pp. 2212-2221.
 
fyn tyrosine kinase is involved in keratinocyte differentiation control.
Calautti E., Missero C., Stein P.L., Ezzell R.M., Dotto G.P., 1995. Genes and Development, 9 (18) pp. 2279-2291.
 
Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation.
Missero C., Calautti E., Eckner R., Chin J., Tsai L.H., Livingston D.M., Dotto G.P., 1995. Proceedings of the National Academy of Sciences of the United States of America, 92 (12) pp. 5451-5455.
 
Dermal fibroblasts tumor suppression of ras-transformed keratinocytes is associated with induction of squamous cell differentiation.
Ramón y Cajal S., Missero C., Marchetti E., Dotto G.P., 1994. American Journal of Pathology, 145 (4) pp. 846-855.
 
Functional evidence for an extracellular calcium receptor mechanism triggering tyrosine kinase activation associated with mouse keratinocyte differentiation.
Filvaroff E., Calautti E., Reiss M., Dotto G.P., 1994. Journal of Biological Chemistry, 269 (34) pp. 21735-21740.
 
Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation.
Brissette J.L., Kumar N.M., Gilula N.B., Hall J.E., Dotto G.P., 1994. Proceedings of the National Academy of Sciences of the United States of America, 91 (14) pp. 6453-6457.
 
The E1A oncogene induces resistance to the effects of 1,25-dihydroxyvitamin D3 on inhibition of growth of mouse keratinocytes.
Park K., Bae H., Heydemann A., Roberts A.B., Dotto G.P., Sporn M.B., Kim S.J., 1994. Cancer Research, 54 (23) pp. 6087-6089.
 
Counteracting effects of E1a transformation on cAMP growth inhibition.
Florin-Christensen M., Missero C., Florin-Christensen J., Tranque P., Ramon y Cajal S., Dotto G.P., 1993. Experimental Cell Research, 207 (1) pp. 57-61.
 
Different levels of v-Ha-ras p21 expression in primary keratinocytes transformed with Harvey sarcoma virus correlate with benign versus malignant behavior.
Brissette J.L., Missero C., Yuspa S.H., Dotto G.P., 1993. Molecular Carcinogenesis, 7 (1) pp. 21-25.
 
Skin-specific expression of a truncated E1a oncoprotein binding to p105-Rb leads to abnormal hair follicle maturation without increased epidermal proliferation.
Missero C., Serra C., Stenn K., Dotto G.P., 1993. Journal of Cell Biology, 121 (5) pp. 1109-1120.
 
Transforming growth factor beta 1 induction is associated with transforming growth factors beta 2 and beta 3 down-modulation in 12-O-tetradecanoylphorbol-13-acetate-induced skin hyperplasia.
Escherick J.S., DiCunto F., Flanders K.C., Missero C., Dotto G.P., 1993. Cancer Research, 53 (22) pp. 5517-5522.
 
Specific changes of Ras GTPase-activating protein (GAP) and a GAP-associated p62 protein during calcium-induced keratinocyte differentiation.
Filvaroff E., Calautti E., McCormick F., Dotto G.P., 1992. Molecular and Cellular Biology, 12 (12) pp. 5319-5328.
 
The E1a gene prevents inhibition of keratinocyte proliferation by dexamethasone.
Florin-Christensen M., Missero C., Dotto G.P., Florin-Christensen J., 1992. Experimental Cell Research, 203 (1) pp. 285-288.
 
Escape from transforming growth factor beta control and oncogene cooperation in skin tumor development.
Missero C., Ramon y Cajal S., Dotto G.P., 1991. Proceedings of the National Academy of Sciences of the United States of America, 88 (21) pp. 9613-9617.
 
Induction of different morphologic features of malignant melanoma and pigmented lesions after transformation of murine melanocytes with bFGF-cDNA and H-ras, myc, neu, and E1a oncogenes.
Ramon y Cajal S., Suster S., Halaban R., Filvaroff E., Dotto G.P., 1991. American Journal of Pathology, 138 (2) pp. 349-358.
 
Induction of transforming growth factor beta 1 resistance by the E1A oncogene requires binding to a specific set of cellular proteins.
Missero C., Filvaroff E., Dotto G.P., 1991. Proceedings of the National Academy of Sciences of the United States of America, 88 (8) pp. 3489-3493.
 
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate and the ras oncogene modulate expression and phosphorylation of gap junction proteins.
Brissette J.L., Kumar N.M., Gilula N.B., Dotto G.P., 1991. Molecular and Cellular Biology, 11 (10) pp. 5364-5371.
 
Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16.
Leptak C., Ramon y Cajal S., Kulke R., Horwitz B.H., Riese D.J., Dotto G.P., DiMaio D., 1991. Journal of Virology, 65 (12) pp. 7078-7083.
 
Tyrosine phosphorylation is an early and specific event involved in primary keratinocyte differentiation.
Filvaroff E., Stern D.F., Dotto G.P., 1990. Molecular and Cellular Biology, 10 (3) pp. 1164-1173.
 
Similar and synergistic inhibition of gap-junctional communication by ras transformation and tumor promoter treatment of mouse primary keratinocytes.
Dotto G.P., el-Fouly M.H., Nelson C., Trosko J.E., 1989. Oncogene, 4 (5) pp. 637-641.
 
Transformation and plasmacytoid differentiation of EBV-infected human B lymphoblasts by ras oncogenes.
Seremetis S., Inghirami G., Ferrero D., Newcomb E.W., Knowles D.M., Dotto G.P., Dalla-Favera R., 1989. Science, 243 (4891) pp. 660-663.
 
Transformation of murine melanocytes by basic fibroblast growth factor cDNA and oncogenes and selective suppression of the transformed phenotype in a reconstituted cutaneous environment.
Dotto G.P., Moellmann G., Ghosh S., Edwards M., Halaban R., 1989. Journal of Cell Biology, 109 (6 Pt 1) pp. 3115-3128.
 
Different biological effects of c-myc and H-ras oncogene expression in EBV-infected human lymphoblasts.
Seremetis S., Inghirami G., Ferrero D., Lombardi L., Knowlest D.M., Dotto G.P., Dalla-Favera R., 1988. Current Topics in Microbiology and Immunology, 141 pp. 290-297.
 
Malignant progression of papilloma-derived keratinocytes: differential effects of the ras, neu, and p53 oncogenes.
Dotto G.P., O'Connell J., Patskan G., Conti C., Ariza A., Slaga T.J., 1988. Molecular Carcinogenesis, 1 (3) pp. 171-179.
 
Malignant transformation of mouse primary keratinocytes by Harvey sarcoma virus and its modulation by surrounding normal cells.
Dotto G.P., Weinberg R.A., Ariza A., 1988. Proceedings of the National Academy of Sciences of the United States of America, 85 (17) pp. 6389-6393.
 
Multistep carcinogenesis: studies with primary fibroblasts and keratinocytes
Dotto G.P., Gilman M.Z., Weinberg R.A., 1988. pp. 317-329 dans Langenbach R., Elmore E., Barrett J.C. (eds.) Tumor promoters: biological approaches for mechanistic studies and assay systems, Raven Press.
 
c-myc and c-fos expression in differentiating mouse primary keratinocytes.
Dotto G.P., Gilman M.Z., Maruyama M., Weinberg R.A., 1986. EMBO Journal, 5 (11) pp. 2853-2857.
 
Specific growth response of ras-transformed embryo fibroblasts to tumour promoters.
Dotto G.P., Parada L.F., Weinberg R.A., 1985. Nature, 318 (6045) pp. 472-475.
 
Increased intracellular concentration of an initiator protein markedly reduces the minimal sequence required for initiation of DNA synthesis.
Dotto G.P., Zinder N.D., 1984. Proceedings of the National Academy of Sciences of the United States of America, 81 (5) pp. 1336-1340.
 
Reduction of the minimal sequence for initiation of DNA synthesis by qualitative or quantitative changes of an initiator protein.
Dotto G.P., Zinder N.D., 1984. Nature, 311 (5983) pp. 279-280.
 
The functional origin of bacteriophage f1 DNA replication. Its signals and domains.
Dotto G.P., Horiuchi K., Zinder N.D., 1984. Journal of Molecular Biology, 172 (4) pp. 507-521.
 
The origin of DNA replication of bacteriophage f1 and its interaction with the phage gene II protein.
Dotto G.P., Horiuchi K., Zinder N.D., 1984. Advances in Experimental Medicine and Biology, 179 pp. 185-191.
 
Signals for the initiation and termination of synthesis of the viral strand of bacteriophage f1.
Dotto G.P., Horiuchi K., Jakes K.S., Zinder N.D., 1983. Cold Spring Harbor Symposia on Quantitative Biology, 47 (Pt 2) pp. 717-722.
 
The morphogenetic signal of bacteriophage f1.
Dotto G.P., Zinder N.D., 1983. Virology, 130 (1) pp. 252-256.
 
Initiation and termination of phage f1 plus-strand synthesis.
Dotto G.P., Horiuchi K., Zinder N.D., 1982. Proceedings of the National Academy of Sciences of the United States of America, 79 (23) pp. 7122-7126.
 
Replication origin of bacteriophage f1. Two signals required for its function.
Dotto G.P., Horiuchi K., Jakes K.S., Zinder N.D., 1982. Journal of Molecular Biology, 162 (2) pp. 335-343.
 
Functional analysis of bacteriophage f1 intergenic region.
Dotto G.P., Enea V., Zinder N.D., 1981. Virology, 114 (2) pp. 463-473.
 
Gene II of phage f1: its functions and its products.
Dotto G.P., Enea V., Zinder N.D., 1981. Proceedings of the National Academy of Sciences of the United States of America, 78 (9) pp. 5421-5424.
 
Replication of a plasmid containing two origins of bacteriophage.
Dotto G.P., Horiuchi K., 1981. Journal of Molecular Biology, 153 (1) pp. 169-176.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Swiss University